Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes

Identifieur interne : 000560 ( Chine/Analysis ); précédent : 000559; suivant : 000561

Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes

Auteurs : RBID : Pascal:12-0060341

Descripteurs français

English descriptors

Abstract

Micro-pixelated InGaN LED arrays operating at 560 and 600 nm, respectively, are demonstrated for what the authors believe to be the first time. Such devices offer applications in areas including bioinstrumentation, visible light communications and optoelectronic tweezers. The devices reported are based on new epitaxial structures, retaining conventional (0001) orientation, but incorporating electron reservoir layers which enhance the efficiency of radiative combination in the active regions. A measured output optical power density up to 8 W cm-2 (4.4 W cm-2) has been achieved from a representative pixel of the yellow-green (amber) LED array, substantially higher than that from conventional broad-area reference LEDs fabricated from the same wafer material. Furthermore, these micro-LEDs can sustain a high current density, up to 4.5 kA cm-2, before thermal rollover. A significant blueshift of the emission wavelength with increasing injection current is observed, however. This blueshift saturates at 45 nm (50 nm) for the yellow-green (amber) LED array, and numerical simulations have been used to gain insight into the responsible mechanisms in this microstructured format of device. In the relatively low-current-density regime (<3.5 kA cm-2) the blueshift is attributable to both the screening of the piezoelectric field by the injected carriers and the band-filling effect, whereas in the high-current regime, it is mainly due to band-filling. Further development of the epitaxial wafer material is expected to improve the current-dependent spectral stability.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0060341

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes</title>
<author>
<name sortKey="Gong, Z" uniqKey="Gong Z">Z. Gong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, N Y" uniqKey="Liu N">N. Y. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physics Department, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tao, Y B" uniqKey="Tao Y">Y. B. Tao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physics Department, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Massoubre, D" uniqKey="Massoubre D">D. Massoubre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xie, E Y" uniqKey="Xie E">E. Y. Xie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, X D" uniqKey="Hu X">X. D. Hu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physics Department, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Z Z" uniqKey="Chen Z">Z. Z. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physics Department, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, G Y" uniqKey="Zhang G">G. Y. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physics Department, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pan, Y B" uniqKey="Pan Y">Y. B. Pan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Epilight Technology Co., Ltd</s1>
<s2>Shanghai 201203</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hao, M S" uniqKey="Hao M">M. S. Hao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Epilight Technology Co., Ltd</s1>
<s2>Shanghai 201203</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Watson, I M" uniqKey="Watson I">I. M. Watson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gu, E" uniqKey="Gu E">E. Gu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dawson, M D" uniqKey="Dawson M">M. D. Dawson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NW</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0060341</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0060341 INIST</idno>
<idno type="RBID">Pascal:12-0060341</idno>
<idno type="wicri:Area/Main/Corpus">002321</idno>
<idno type="wicri:Area/Main/Repository">001D11</idno>
<idno type="wicri:Area/Chine/Extraction">000560</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Charge carrier injection</term>
<term>Current density</term>
<term>Energy level population</term>
<term>Epitaxy</term>
<term>Flip chip bonding</term>
<term>Gallium nitride</term>
<term>Heterostructures</term>
<term>Indium nitride</term>
<term>Light emitting diode</term>
<term>Photoluminescence</term>
<term>Radiative recombination</term>
<term>Spectral line shift</term>
<term>Voltage current curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Diode électroluminescente</term>
<term>Photoluminescence</term>
<term>Recombinaison radiative</term>
<term>Déplacement raie</term>
<term>Epitaxie</term>
<term>Caractéristique courant tension</term>
<term>Population niveau énergie</term>
<term>Injection porteur charge</term>
<term>Connexion par billes</term>
<term>Densité courant</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Hétérostructure</term>
<term>InGaN</term>
<term>8560</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Micro-pixelated InGaN LED arrays operating at 560 and 600 nm, respectively, are demonstrated for what the authors believe to be the first time. Such devices offer applications in areas including bioinstrumentation, visible light communications and optoelectronic tweezers. The devices reported are based on new epitaxial structures, retaining conventional (0001) orientation, but incorporating electron reservoir layers which enhance the efficiency of radiative combination in the active regions. A measured output optical power density up to 8 W cm-
<sup>2</sup>
(4.4 W cm
<sup>-2</sup>
) has been achieved from a representative pixel of the yellow-green (amber) LED array, substantially higher than that from conventional broad-area reference LEDs fabricated from the same wafer material. Furthermore, these micro-LEDs can sustain a high current density, up to 4.5 kA cm
<sup>-2</sup>
, before thermal rollover. A significant blueshift of the emission wavelength with increasing injection current is observed, however. This blueshift saturates at 45 nm (50 nm) for the yellow-green (amber) LED array, and numerical simulations have been used to gain insight into the responsible mechanisms in this microstructured format of device. In the relatively low-current-density regime (<3.5 kA cm
<sup>-2</sup>
) the blueshift is attributable to both the screening of the piezoelectric field by the injected carriers and the band-filling effect, whereas in the high-current regime, it is mainly due to band-filling. Further development of the epitaxial wafer material is expected to improve the current-dependent spectral stability.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>27</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GONG (Z.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIU (N. Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TAO (Y. B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MASSOUBRE (D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>XIE (E. Y.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HU (X. D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CHEN (Z. Z.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ZHANG (G. Y.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>PAN (Y. B.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>HAO (M. S.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>WATSON (I. M.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>GU (E.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>DAWSON (M. D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Photonics, University of Strathclyde</s1>
<s2>Glasgow G4 0NW</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Physics Department, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Epilight Technology Co., Ltd</s1>
<s2>Shanghai 201203</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s2>015003.1-015003.7</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000508626230040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0060341</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Micro-pixelated InGaN LED arrays operating at 560 and 600 nm, respectively, are demonstrated for what the authors believe to be the first time. Such devices offer applications in areas including bioinstrumentation, visible light communications and optoelectronic tweezers. The devices reported are based on new epitaxial structures, retaining conventional (0001) orientation, but incorporating electron reservoir layers which enhance the efficiency of radiative combination in the active regions. A measured output optical power density up to 8 W cm-
<sup>2</sup>
(4.4 W cm
<sup>-2</sup>
) has been achieved from a representative pixel of the yellow-green (amber) LED array, substantially higher than that from conventional broad-area reference LEDs fabricated from the same wafer material. Furthermore, these micro-LEDs can sustain a high current density, up to 4.5 kA cm
<sup>-2</sup>
, before thermal rollover. A significant blueshift of the emission wavelength with increasing injection current is observed, however. This blueshift saturates at 45 nm (50 nm) for the yellow-green (amber) LED array, and numerical simulations have been used to gain insight into the responsible mechanisms in this microstructured format of device. In the relatively low-current-density regime (<3.5 kA cm
<sup>-2</sup>
) the blueshift is attributable to both the screening of the piezoelectric field by the injected carriers and the band-filling effect, whereas in the high-current regime, it is mainly due to band-filling. Further development of the epitaxial wafer material is expected to improve the current-dependent spectral stability.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Recombinaison radiative</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Radiative recombination</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Recombinación radiativa</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Déplacement raie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Spectral line shift</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Desplazamiento raya espectral</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Epitaxie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Epitaxy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Epitaxia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Population niveau énergie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Energy level population</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Población nivel energía</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Injection porteur charge</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Charge carrier injection</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Inyección portador carga</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Connexion par billes</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Flip chip bonding</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Conexión espesada</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Densité courant</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Current density</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Densidad corriente</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>8560</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>037</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000560 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000560 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0060341
   |texte=   Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024